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This report provides descriptions of the results of five projects that were conducted with
AFOSR support during the period from December, 1996 to December 1999 under award

F49620-97-1-0045.
PROJECT 1. The role of memory in the deployment of attention in visual search

In visual search tasks, observers look for a target item among a number of distractor
items. Real world examples include searching for a face in the crowd or a tank in a field.
For some search tasks, the target cannot be identified (or, perhaps, even seen) until it is
foveated. Finding a particular word on a page of text would be an example. In other tasks,
while the items are clearly visible, the target is not identified until it becomes the object
of attention. As an example, consider Figure One. All 16 items are quite clearly visible.

However, you only identify the target

J I I I "T" when you attend to it.

‘ I r | I How do you perform such a task?

Common sense suggests that you

I I r I deploy attention from item to item

until you locate the target. Common

1 I I I sense might also suggest that you

should mark each rejected "L"
distractor in a manner that would prevent you from revisiting an item that is clearly not

the target. Hence, one of the standard models of this sort of visual search has been a
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"serial, self-terminating search (Treisman and Gelade 1980). This is shown in cartoon
version in Figure 2. If search is serial and self-

terminating, then the time required to find a : I—

target (reaction time, "RT") will increase linearly

X

D

r M
with the number of items (the set size). When the - Fea I
target is present, the observer will need to search

through half of the items on an average trial

before attention is deployed to the target. If no

Fig. 2

target is present, then all distractor items will Serial, self-terminating search

need to be attended and rejected before search is ended. As a consequence, the slope of
the function relating RT to set size will be twice as steep for target-absent searches as it is
for target present (Sternberg 1969). In a search like the one shown in Figure Two, RT
increases at a rate of 20-30 msec/item for target-present trials and 40-60 msec/item for

target-absent trials (Wolfe 1998).

Serial models are not the only models for search. It is also possible to imagine that all
items are being processed in parallel and that the observer responds when enough target
information accumulates to permit identification of a target or when all items are

identified as distractors (Kinchla 1974; Ratcliff 1978; Palmer 1995).
One attribute, shared by standard serial and parallel models of search, is accumulation of

information during the course of a search trial. In serial models, that accumulation takes

the form of a memory for the location of rejected distractor items (Fig 2). In parallel
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models, it is the steady accumulation of information about item identity. We have
conducted three lines of experiments seeking to document this memory in visual search.
In each case, our results indicate that there is no memory (or, at best, very little). These
lines of research will be briefly described below followed by a discussion of the

implications of this finding.

Project 1.1 - Dynamic Search
In the most intuitively straight-forward paradigm, the search display was repeatedly and
randomly scrambled during the course of the search trial. This is shown schematically for

the T among L task in Figure 3:

darL < L

L "L
FrlrTadr
-'

L =
r
-1 L JdL

A0 r

T r r

-
-4
L L rl._ 1 Jd L

Fig. 3 The dynamic search paradigm

On each frame, all of the items in the display were randomly replotted to new locations.
If there was a target present, it was present in all frames but its location changed from
frame to frame. Such a method of presentation obviously thwarts the serial marking of
rejected distractors. It would also disable many forms of parallel accumulation of
information (e.g. any model that proposed location-specific accumulation of
information). For serial models, the predicted outcome of this manipulation is clear. If the
mean RTs in a standard Static search task produce a slope of X msec/item, slope from

Dynamic search should increase to 2X msec/item.
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We have run many different versions of this Dynamic search experiment, using different
search tasks and varying frame rates (2-10 Hz). We consistently find that the slope in the
Dynamic condition is the same as the slope in the Static condition. An example is shown
in Figure Four. These are data from a version in which the display was changed every
500 msec. Items could be replotted either to the same locations on each frame or to
different locations on each frame. It is clear from the graph (and substantiated by
statistical analysis) that the slopes in the Dynamic search conditions do not differ from

the Static search slope and that they do differ from the 2X prediction of the standard

model.

8000

6000 - —{3— Dynamic fixed locations
A
E ~—&— Dynamic random locations
= 4000 -
E —— Static

2000 - == === memory prediction

0

0 15 30 45 60
Set Size

Figure 4: Results of one Dynamic vs Static search experiment

Since it made no difference to the efficiency of visual search when memory was thwarted
in the Dynamic search conditions, we suggested that memory for rejected distractors
might not be a factor in standard, Static search either. Rather than sampling the display

without replacement as would seem most reasonable, the data indicate that observers
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sample the display with replacement, picking a new object of attention without regard for
prior history of attentional deployment on that trial. Further details can be found in the

Nature paper that accompanies this report (Horowitz and Wolfe 1998).

Project 1.2 Multiple Target Search
In an effort to obtain converging evidence on the presence or absence of memory for
rejected distractors, a second task was developed. A sample is illustrated in Figure 5. In

this task, observers were asked if there were at least N

1 A H 2 digits in a display of letters. The example shown here
Y4 W could be drawn from a block in which observers were
4 A7 asked if at least four digits were present. This would be
N a "yes" trial for that task. Another block, with the same

FHK|_

stimulus, observers could be asked if there were two

Fig. 5 - Multiple target search digits (yes response) or five (no responé.e) and so forth.
In this way, it is possible to estimate the time required to find the first, second, third, and
fourth digits. Standard models make different predictions from what we can call our
"amnesic" model. In the standard model of search without replacement, the number of
unchecked distractors declines during the course of search as does the number of

undiscovered targets. The result is a linear increase in the time required to find successive

targets.

In the amnesic model of search with replacement, as search progresses, the number of

available targets drops while the number of potential distractors remains the same. As a
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consequence, the time required to find N targets will be an accelerating function of the

number of targets to be found. Sample results are shown in Figure Six: The most

instructive data are those for displays
with five digits present. These data
show the clear acceleration predicted
by the amnesic model. Overall, the
data reject the standard memory
model and are consistent with the
amnesic model. It is important to
note that the memory model that is
rejected is a model that proposes a
perfect memory for all rejected

distractors. It is harder to reject a less

Reaction Time (ms)

k. (o
1= p—
> [—]
2 3

900

800+

700

600~ ‘ . , : :
1 2 3 4 5 6
targets to look for

Fig. 6: Results for multiple target search.
Parameter on curve is the number of
targets present in the display. X-axis
shows number of targets observers
searched for.

comprehensive memory (e.g. memory for the last rejected item or two). Indeed, it is hard

to know how search could proceed with
absolutely no memory. With no
memory, it would seem that the visual
system could get "stuck", perseverating

on a single salient item.

Project 1.3 - A third approach

100 %/
Q\ e data
\ we———  amnesia fit

75% = s memory fit
3
e~
5
S 50%
g
=

25%-

AN
0%

transition (ms)

0 1'00 2'00 3‘00 4'00 5'0\0 " In a third effort to address the issue of

memory in visual search, we had

Figure 7 - Results of the third line of
research on memory in visual search.
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observers search for a mirror-reversed S or P among standard letters. A target was present
on every trial. The displays were entirely static but all of the letters changed color at
some point during the trial. The task of the observer was to name the color of the target
when it was first seen. In this way, we could determine if the target was found before or
after the color change. The measure of interest is the percentage of targets not found prior
to the change as a function of variation in the time of change. In a standard memory
model, attention marches through the items, one after the other. If there are 10 items, it
will take 10 steps to search through the items. There is a 10% chance of finding the target
on each step. Consequently, a linear function relates the probability of having not found
the target to the moment of color transition. The slope of that function is a measure of the
rate of processing. If there is no memory for rejected distractors, then each deployment of
attention is independent. If there are N items in the display, the probability not finding the
item on the first try is 1-(1/N) and the probability after the Jth try is (1-(1/N))’ - an
exponential decay. Again, the standard memory model and the amnesic model make
qualitatively different predictions about the shape of the data. The results are shown in
Figure 7 and are fit better with an amnesic model than with a standard memory model.

Again, we cannot reject a model that proposes a small amount of memory.

Assessing parallel models.

It is much harder to generate precise predictions for models that propose parallel
processing of multiple letters. However, we can describe the constraints on any parallel
model that hopes to explain these data. First, the dynar.nic search tasks seem to falsify the

class of parallel models that relies on steady accumulation of information at multiple loci.
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Accumulation is not possible in these tasks. Nevertheless, search is not only possible, but
reasonably efficient. One could propose that parallel processing consists of a set of
parallel "snapshots" (e.g. one per fixation or, in dynamic search, one per frame). These
would be independent of each other. There would be some probability of finding the
target with each of these snapshots. In effect, this would be an amnesic parallel model
and is probably indistinguishable from the amnesic serial model in its predictions about
these experiments. In our discussion of Project Three, we briefly sketch a related

argument about the futility of distinguishing serial and parallel models of search.

The important conclusion from this line of work is that, however search is accomplished,
it does not appear to involve extensive memory for the course of the search. We can
speculate about why this should be the case as it initially appears somewhat counter-
intuitive. It seems most likely that this is an example of a type of speed accuracy tradeoff.
Maintaining a memory for distractor location probably carries a cost in required time
and/or processing capacity that makes it more efficient to search at random with
replacement than to search in a more orderly manner, without replacement. The next
section describes a different line of experiments that also point to the advantages of fast,

sloppy processing over slower controlled processing.

Publications & Manuscripts associated with Project One (papers marked with an *
are included with this report)

*Horowitz, T. S. and J. M. Wolfe (1998). “Visual search has no memory.” Nature
394(Aug 6): 575-5717.

*Horowitz, T. S. and J. M. Wolfe (2000). “Search for multiple targets: Remember the
targets, forget the search.” Perception and Psychophysics accepted 6/00.
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This project will give rise to at least two more manuscripts in the next year.
Published abstracts:

Alvarez, G., T. S. Horowitzl1, et al. (1999). “New evidence against global accumulation
of information in visual search.” Investigative Opthalmology and Visual Science 40(4).

Alvarez, G., T. S. Horowitz, et al. (1999). “Visual search is globally amnesic.” paper
presented at EPA annual meeting. March, 1999: Providence, RI.

Horowitz, T. S. and J. M. Wolfe (1997). “Is visual search lost in space?” Investigative
Ophthalmology and Visual Science 38(4): S688.

Horowitz, T. S. and J. M. Wolfe (1998). “Temporal transients disrupt attentional

guidance but not visual search.” Investigative Ophthalmology and Visual Science 39(4):
S225.

Horowitz, T. S. and J. M. Wolfe (1999). “Defending the proposition that visual search
has no memory.” paper presented at EPA annual meeting. March, 1999: Providence, RI.

Horowitz, T. S., J. M. Wolfe, et al. (1999). “Amnesic seérch is not an artifact of stimulus
duration.” 3rd annual Vision Research conference. Preattentive and Attentive
Mechanisms in Vision(7-8 May): Ft. Lauderdale, FL.

Wolfe, J. M., T. S. Horowitz, et al. (2000). “Further evidence for amnesic search:
Attention is still lost in space.” Investigative Opthalmology and Visual Science 41(4):
S760 (Abstract 4033).

Horowitz, T. S., Wolfe, J. M. (1998). Indirect estimates of attentional dwell time.
Proceedings of the Eastern Psychological Association; 69.

Horowitz, T. S. & Wolfe, J. M. (1997). Visual search in the eternal present. Abstracts of
the Psychonomic Society, 2.

PROJECT TWO: Commanded Search

If visual search processes are truly (or nearly) amnesic, why don't observers use some
sort of systematic strategy when searching. Subjects could "read" a display from top-left
to bottom-right or attention could spiral out from fixation. Any path would serve the

function of memory without the requirement to remember more than the current
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deployment of attention and the planned route of deployment. We know that observers do
not normally use strategic plans of this sort because, if they did, then there would have
been a difference between Static and Dynamic search slopes in the Section 1.1 above.
There is order when observers search more complex images for longer periods of time
(Noton and Stark 1971; Zangemeister, Sherman et al. 1995) but, except for a bias toward
the fovea (Carrasco, Evert et al. 1995; Wolfe, O'Neill et al. 1998), little evidence for

order in the deployment of covert attention in standard laboratory search tasks.

Project 2.1 Dynamic Displays
In an effort to understand this, we developed tasks that force observers to deploy

attention in a pre-ordained, systematic manner. Sample stimuli are shown in Figure 8. In

8a 8b 8c 8d
A G E xf e M AML M gcv
A A
F B m 0S B RS r k
K n
S H w9 kl%cS K| ©aq
Frame 1 Frame 2 Frame 3 Frame 4...

Figure 8: In this Commanded search task, observers move

attenion in a clockwise manner from frame to frame. If they

move at the correct rate, attention is deployed to the correct

item when a target "Y" or "N' appears. In this case, the

target is in position 4 on frame 4 (8d).
our Command condition, 12 observers saw 8 frames like Fig 8a-d for 53 msec each
followed by a variable duration mask. One target, a "Y" or "N" was present on each trial.
This target could only appear at Position One (12 O'clock) on Frame One, Position Two
on Frame Two, etc. If an observer deployed attention at the correct rate, clockwise

around the circle, attention would be on the target when it appeared (Position 4 - Fig 8d)

and they could determine if it was a 'Y or N. Otherwise, the task was impossible.
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Observers were fully informed and trained to move attention clockwise in time to a
spatially uninformative tone. A staircase procedure was used to measure the maximum
speed that permitted 70% correct performance. Due to software limits, the maximum rate

possible was 80 msec/frame in this version of the experiment.

For comparison, observers performed a Random Anarchy condition. Here, the Y or N
was present on all frames but moved amongst three locations (different on each trial)
between frames. Subjects’ deployment of attention was not constrained; they could
sample the display at random. Randomization thwarted any parallel accumulation of
information and prevented observers from attending to a single location and waiting for
the target to arrive. Observers were asked to fixate. Letters were large enough to read
without fixation and, critically, the stimulus configuration was the same i.n Random
Anarchy and Command conditions. Any eye movement or other perceptual limitations in

the Command condition would also apply to

Random Anarchy.

[ N4

S

<
1

COMMAND

A control experiment with static letters

confirmed that these stimuli are searched at a

[=.2]
[—]
|

lllltll;.‘lrlillll'l'lFlllllll;‘l'l'lll
0 25 50 75 100

Trial Number Results of the staircase method for the Command
Figure 9: Anarchic search is
faster than Commanded search  and Random Anarchy conditions are shown in

Frame rate (msec)
[y
(=2}
(=]
]

standard 41 msec/item in normal visual search.

Figure 9. The average minimum Commanded rate was 217 msec/frame. This corresponds

to a rate of 217 msec/item. The Random Anarchy staircase tended to run into the 80
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msec/frame "floor" and produced an average105 msec/frame rate. This would yield an
estimate of 105-187 msec/item, depending on assumptions about memory in visual
search. This estimate is conservative because of the problems with the 80 msec/frame
limit. Other Anarchy conditions without this constraint yielded estimates between 13 and
44 msec/item for Anarchy. We have repeated the Command condition with slight
variations in the method. The results are always comparable. Commanded search is much
slower than anarchic search. We conclude that observers search unsystematically in
standard, laboratory search tasks because the rate of unsystematic search is so much
faster than the rate of orderly, commanded search. In this case, anarchy saves time.

Project 2.2 - Static Displays

In order to have converging evidence for the apparently
q > P
S P
9, S
Command
s P's
P q
S g P
Anarchby
Figure 10: Static displays for

i measuring Commanded and
reversed letter (here "P"). The difficulty with this Anarchic search rates.

slow rate of Command attention, we have developed a
task that compares Commanded and Anarchic search in

entirely static displays. Sample stimuli are shown in

Figure 10. In the Command condition, the observers
task is to start at the 12 O'clock (straight up) position

and, moving clockwise, determine the identity of the

first mirror-reversed letter (here "S"). In the Anarchy

condition, observers simply identify the sole mirror-

method is that observers can try to cheat by jumping ahead in the Command condition

(and there is some evidence in the data that they did so on some percentage of trials).
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Nevertheless, the estimates of the rate of processing are comparable to those obtained

with the dynamic displays. Commanded search is much slower than anarchic search.

Projects in this area are ongoing in the lab at the present time.

Publications & Manuscripts associated with Project Two:

*Wolfe, J., G. Alvarez, et al. (2000). “Attention is fast but volition is slow.” Nature
accepted April, 2000.

A longer paper on this subject will be forthcoming.

Published Abstracts

Wolfe, J. M. and G. A. Alvarez (1999). “Give me liberty or give me more time! Your
visual attention is faster if you don't tell it what to do.” Investigative Ophthalmology and
Visual Science 40(4): S796.

Horowitz, T. S., A. O. Holcombe, et al. (2000). “Tracking ambiguous motion enables fast
attentional shifts.” Investigative Opthalmology and Visual Science 41(4): S422 (Abstract
2234).

PROJECT THREE: Transcending the serial/parallel debate

A great deal of ink has been spilled on debate about the serial vs parallel processing in
visual search. There is an interesting issue at stake here. Those of us who argue for a
serial model hold that a mandatory serial step in search is a way to deal with the "binding
problem" (von der Malsburg 1981; Treisman 1996; Wolfe and Cave 1999). Prior to the
arrival of attention, objects appear to be represented as loose bundles of features (Wolfe
and Bennett 1997). Attention allows features to be bound to objects in a way that makes
explicit the relationships between the features (e.g. Is that a red balloon with green spots

or a green balloon with red spots?). Attention to a single object prevents illusory

combination of features from different objects (Treisman and Schmidt 1982).
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This may or may not be an appealing theoretical argument. In either case, it is not
empirical data. It has proven very difficult to produce data that can be used to argue
definitively for serial or parallel processing in visual search. One problem is that, for
many standard paradigms, the same pattern of results can be obtained with serial and
parallel models (Townsend 1990). Recently, we have noted that the dichotomy maybe
artificial. The “serial” models, like Feature Integration Theory (Treisman and Gelade
1980; Treisman and Sato 1990) or our Guided Search (Wolfe, Cave et al. 1989; Wolfe

1994) are really hybrid serial/parallel models.

The root of the misunderstanding lies in the interpretation of search slopes. Suppose that
a search task produces a target-present slope of 20 msec/item. In serial models, this is

taken to mean that one item is being processed every 40 msec, if search has a memory or
every 20 msec, if search has no memory (see Project 1). What is usually forgotten is that

this slope represents a rate of processing. Processing one item every 20 msec does not

mean that it takes only 20 msec to process an item from image to identification. This is
implausible. Identification probably takes several hundred msec (depending on the
stimulus). A useful analogy is a car wash. We can imagine cars ehtering a carwash at a
rate of 1 per minute. However, this does not mean that it takes one minute to wash the
car. It might take five. Several cars can be in the carwash at the same time. Is this a serial
process? Certainly the cars are entering one at a time. Is this a parallel process? Certainly

cars are being washed in parallel.
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In a cognitive carwash it is possible to imagine a car/search item entering the process
second and emerging first, but even without such complications, it is clear that such a
process will appear parallel if examined with one sort of experimental method and serial
if examined with other methods. (For an early version of such a model see Harris, Shaw
et al. 1979). Efforts to "falsify" strict serial models are killing "red herrings" because no
sensible serial model of search is purely serial. What is needed are specific models that
are explicit enough in their architecture to be tested - regardless of their label as "serial"

or "parallel".

Publications & Manuscripts associated with Project Three

Wolfe, J. M. (1999). Inattentional amnesia. Fleeting Memories. V. Coltheart. Cambridge,
MA, MIT Press: 71-94.

Moore, C. M. and J. M. Wolfe (2000). Getting beyond the serial/parallel debate in visual

search: A hybrid approach. The Limits of Attention: Temporal Constraints on Human
Information Processing. K. Shapiro. Oxford, Oxford U. Press.

PROJECT FOUR: Guided Search: A modification of the computation of bottom-up

salience

Our contribution to the effort to create specific, testable models of visual search is the
Guided Search model (Wolfe, Cave et al. 1989; Wolfe 1994; Wolfe and Gancarz 1996).
One of the goals of the prior period of grant support was to create the next generation of
the model. We are continuing to work on that project which was made more complicated

by the discovery that our assumptions about memory in visual search were incorrect.

page 16 8/31/00




AFOSR F49620-97-1-0045 PI: Wolfe, Jeremy M

In brief, Guided Search proposes that serial deployments of attention are guided to likely
targets on the basis of parallel processing of information about a limited number of basic
features like color, size, and orientation. Thus, if subjects are searching for a T among L's
they may search randomly among all items. If they are searching for a red T among red
and green L's, they will search randomly though the set of red letters (Egeth, Virzi et al.
1984). Guidance comes in two forms. The preceding example is a case of "top-down"
user-driven guidance. Attention is guided toward objects having known features of the
target. There is also "bottom-up" activation where attention is attracted to locally salient

items (e.g. a green item amongst red).

We have recently proposed a modification of the bottom-up component of Guided Search
inspired by a report of Andrew Found that questioned the model (Found 1998). Found
looked at the effects of irrelevant feature variation on a conjunction search. The critical

conditions for his experiment are shown in Figure 11.

Standard
Conjunction
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Size Variation

Uncorrelated
Size Variation
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Figure 11: Found (1998) reported that the correlation of an irrelevant
feature with relevant features improved the efﬁclency of a conjuntion
search. This was not predicted by published version of Guided Search.

The first panel shows a standard conjunction search for a black tilted item among white
tilted and black vertical distractors. Found's innovation was to introduce variation in an

irrelevant feature (here size). In the Correlated condition, vertical black items are all
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small and tilted white items are all big. The target, when present, could be either big or
small. Size information was irrelevant but correlated with the relevant color and
orientation information. In the Uncorrelated condition, the size variation was unrelated to

the orientation and color variation.

Published versions of Guided Search clearly predict that the correlation of an irrelevant
feature should not influence search efficiency. No top-down guidance by size is possible.
There would be bottom-up activation associated with the size variation. It would be noise
and should reduce search efficiency. However, its impact should be the same in
Correlated and Uncorrelated conditions because, in published Guided Search, featureal
dimensions are modular and the pattern of activity in one dimension should not have an

impact on another dimension.

Contrary to this prediction, however, Found reported that the Correlated céndition was
more efficient than the Uncorrelated. The effect was small but reliable and we have
replicated it. This makes some intuitive sense if one notices that the Uncorrelated
condition of Figure 11 looks more "noisy" than the correlated case. Found proposed that
this required "parallel processing of conjunctions”. However, we have been able to model
the result without giving up any of the core assumptions of Guided Search. A cartoon of
the published version of the bottom-up component of Guided Search is shown in Figure
12. For each dimension, local differences between an item and all of its neighbors are
summed within a featureal dimension and then a weighted sum across dimensions

produces the overall activation.
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Figure 12: Calculation of bottom-up activation in published Guided Search.
Local differences are computed between an item and all neighbors. This is
done separately for each featural dimension. The differences are summed
within each feature map creating a "color" activation, a "'size" activation and
so on for each item. The final, bottom-up activation for an item is the
weighted sum of the individual feature activations.

The required change in Guided Search is shown in Figure 13. It has two parts. First, local
differences are summed across featureal dimensions for each pair of items before
summing all of these local differences into a single activation for a specific item. Second,
the local differences pass through a compressive non-linearity before being summed into
a bottom-up activation for a specific item. This may sound more arbitrary than it is. This
non-linearity simply captures the fact that the perceptual, attention-grabbing difference
between two items reaches a maximum. As an example, the salience of the difference
between a red vertical item and a green horizontal item would not be that much greater

than the salience of the difference between a red vertical item and a green vertical item.
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Figure 13: Modified calculation of bottom-up activation: Local differences are

. computed for each featural dimension. These are summed locally and then
passed through a compressive non-linearity. These local differences are then
summed to create the bottom-up activation for an item

We have implemented a partial Guided Search model with this modification. Sample

results are shown in Figure 14. The basic pattern of results from our replication of

Target Present Data Modified Guided Search
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Figure 14: A simulation of the modified Guided Search model captures the
basic pattern of the actual data. page 20 8/31/G0
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Found's experiment is captured by the simulation. The model continues to successfully
simulate other basic search results using the same set of parameters that produce the
results in Figure 14. We are currently working to expand this partial model into a new,
full Guided Search model, which will also incorporate our findings from Project 1

concerning memory in visual search.

Publications and abtracts related to Project Four

*Wolfe, J. M. (2000). “Bottom-up guidance of visual attention: Interaction between
feature dimensions in Guided Search.” Vision Research submitted 6.10.00.

Wolfe, J. M. (1999). “Guided Search 3.5: A bottom-up fix for what Found Found.”
Abstracts of the Psychonomic Society 4: 21.

PROJECT FIVE: Visual Search and Optic Flow

In visual search, items defined by a unique feature are found easily and efficiently.
Search for a moving target among stationary distractors is one such efficient search.
Search for a stationary target among moving distractors is markedly more difficult. This
basic search asymmetry lacked clear documentation in the literature. We have now
provided that evidence. We tested three types of motion: linear, in which all distractors
moved the same way; random linear, in which distractors moved in straight lines but in
random directions; and "Brownian" motion, in which each item moved on its own
random walk. For each type of motion, we had subjects search for a "dead" stationary

target among "live" moving distractors, or vice versa. Results are shown in Table One:
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Linear Motion

Random Linear Motion

Brownian Motion

Live Dead Live Dead Live Dead
Present -1.2 5.0 -1.2 12.9 -1.5 14.0
Absent -1.3 9.5 -0.6 24.6 -0.2 16.5

Table One: Slopes in msec/item for six motion search tasks. Note that search for a
"live" item is always very efficient and always more efficient than the companion

search for a "dead" item.

With those results as a baseline, we went on to ask about search for a moving target with
simulated observer motion. Consider that much visual search in the real world is carried
out by moving observers. Except for items that are moving along the line of sight or that
are moving with the observer, this means that all items in the field will move on the
retina. We asked if the visual system can discount this 'optic flow' (Gibson 1950). We
compared casés where a field of dots moved in a manner that was consistenf with |
observer motion to cases where the dots had the same individual motions but were
spatially rearranged in order to make the overall motion inconsistent with observer
motion. We found that the only factor that was important was local motion contrast. If the
target was moving in manner that made it locally distinctive, it was found efficiently.
Otherwise, search was inefficient. There was no evidence of a privileged status for optic

flow stimuli.

Manuscripts and Abstracts Related to Project Five

*Royden, C. S., J. Wolfe, et al. (2000). “Visual search asymmetries in motion and optic
flow fields.” Perception and Psychophysics submitted.
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Published Abstracts

Klempen, N. L., E. Shulman, et al. (1998). “Visual search asymmetries in motion and
orientation.” Investigative Ophthalmology and Visual Science 39(4): S165.

Royden, C. S., J. M. Wolfe, et al. (1996). “Search for a moving object by a moving
observer.” Investigative Opthalamology and Visual Science 37(3): S299.

Royden, C. S., J. M. Wolfe, et al. (1997). Search for a moving object by a moving
observer: Locating a static object among moving distractors. Annual meeting of the
Cognitive Neuroscience Society, Boston.

CHAPTERS AND REVIEW ARTICLES

AFOSR support was also instrumental in preparation of a number of chapters and review
articles, listed here.

Chun, M. M. and J. M. Wolfe (2000). Visual Attention. Blackwell’s Handbook of
Perception,. E. B. Goldstein, Blackwell: in press.

Wolfe, J. (2000). Visual attention. Seeing. K. K. De Valois. San Diego, CA, Academic
Press: 335-386.

Wolfe, J. and K. O'Craven (2001). Attention. McGraw-Hill 2001 Yearbook of Science
and Technology. C. Moore. New York, McGraw-Hill.

Wolfe, J. M. (1998). “Visual memory: What do you know about what you saw?”” Current
Biology 8(9): R303-304.

Wolfe, J. M. (1998). Visual search. Attention. H. Pashler. Hove, East Sussex, UK,
Psychology Press Ltd.: 13-74.

Wolfe, J. M. (1999). Inattentional amnesia. Fleeting Memories. V. Coltheart. Cambridge,
MA, MIT Press: 71-94.

Wolfe, J. M. (2000). The deployment of visual attention: Two surprises. Search and
Target Acquisition. NATO-RTO. Utrecht, Netherlands, NATO-RTO. 45: 20.1-20.11.

Wolfe, J. M. and K. R. Cave (1999). “The psychophysical evidence for a binding
problem in human vision.” Neuron 24(1): 11-17.

page 23 ' 8/31/00



AFOSR F49620-97-1-0045 PI: Wolfe, Jeremy M

BIBLIOGRAPHY

Carrasco, M., D. L. Evert, et al. (1995). “The eccentricity effect: Target eccentricity
affects performance on conjunction searches.” Perception and Psychophysics
57(8): 1241-1261.

Egeth, H. E., R. A. Virzi, et al. (1984). “Searching for conjunctively defined targets.” J.
Exp. Psychol: Human Perception and Performance 10: 32-39.

Found, A. (1998). “Parallel coding of conjunctions in visual search.” Perception and
Psychophysics 60(7): 1117-1127.

Gibson, J. J. (1950). The perception of the visual world. Boston, Houghton Mifflin.

Harris, J. R., M. L. Shaw, et al. (1979). “Visual search in multicharacter arrays with and
without gaps.” Perception and Psychophysics 26(1): 69-84.

Horowitz, T. S. and J. M. Wolfe (1998). “Visual search has no memory.” Nature
394(Aug 6): 575-577.

Kinchla, R. A. (1974). “Detecting targets in multi-element arrays: A confusability
model.” Perception and Psychophysics 15: 149-158.

Noton, D. and L. Stark (1971). “Scanpaths in saccadic eye movements while viewing and
recognizing patterns.” Vision Res 11(9): 929-42.

Palmer, J. (1995). “Attention in visual search: Distinguishing four causes of a set size
effect.” Current Directions in Psychological Science 4(4): 118-123.

Ratcliff, R. (1978). “A theory of memory retrieval.” Psych. Preview 85(2): 59-108.

Sternberg, S. (1969). “High-speed scanning in human memory.” Science 153: 652-654.

Townsend, J. T. (1990). “Serial and parallel processing: Sometimes they look like
Tweedledum and Tweedledee but they can (and should) be distinguished.”
Psychological Science 1: 46-54. .

Treisman, A. (1996). “The binding problem.” Current Opinion in Neurobiology 6: 171-
178.

Treisman, A. and G. Gelade (1980). “A feature-integration theory of attention.”
Cognitive Psychology 12: 97-136.

Treisman, A. and S. Sato (1990). “Conjunction search revisited.” J. Exp. Psychol: Human
Perception and Performance 16(3): 459-478.

Treisman, A. M. and H. Schmidt (1982). “Illusory conjunctions in the perception of
objects.” Cognitive Psych. 14: 107-141.

von der Malsburg, C. (1981). The correlation theory of brain function. Géttingen,
Germany, Max-Planck-Institute for Biophysical Chemistry.

Wolfe, J. M. (1994). “Guided Search 2.0: A revised model of visual search.”
Psychonomic Bulletin and Review 1(2): 202-238.

Wolfe, J. M. (1998). “What do 1,000,000 trials tell us about visual search?”
Psychological Science 9(1): 33-39.

Wolfe, J. M. and S. C. Bennett (1997). “Preattentive Object Files: Shapeless bundles of
basic features.” Vision Research 37(1): 25-44.

Wolfe, J. M. and K. R. Cave (1999). “The psychophysical evidence for a binding
problem in human vision.” Neuron 24(1): 11-17.

Wolfe, J. M., K. R. Cave, et al. (1989). “Guided Search: An alternative to the Feature
Integration model for visual search.” J. Exp. Psychol. - Human Perception and
Perf. 15: 419-433.

page 24 8/31/00




AFOSR F49620-97-1-0045 PI: Wolfe, Jeremy M

Wolfe, J. M. and G. Gancarz (1996). Guided Search 3.0: A model of visual search
catches up with Jay Enoch 40 years later. Basic and Clinical Applications of
Vision Science. V. Lakshminarayanan. Dordrecht, Netherlands, Kluwer
Academic: 189-192.

Wolfe, J. M., P. E. O'Neill, et al. (1998). “Why are there eccentricity effects in visual
search?” Perception and Psychophysics 60(1): 140-156.

Zangemeister, W. H., K. Sherman, et al. (1995). “Evidence for a global scanpath strategy
in viewing abstract compared with realistic images.” Neuropsychologia 33(8):
1009-25.

page 25 8/31/00




